First Author | Borroni AP | Year | 2018 |
Journal | Aging Cell | Volume | 17 |
Issue | 2 | PubMed ID | 29405587 |
Mgi Jnum | J:258505 | Mgi Id | MGI:6144376 |
Doi | 10.1111/acel.12732 | Citation | Borroni AP, et al. (2018) Smurf2 regulates stability and the autophagic-lysosomal turnover of lamin A and its disease-associated form progerin. Aging Cell 17(2) |
abstractText | A-lamins, encoded by the LMNA gene, are major structural components of the nuclear lamina coordinating essential cellular processes. Mutations in the LMNA gene and/or alterations in its expression levels have been linked to a distinct subset of human disorders, collectively known as laminopathies, and to cancer. Mechanisms regulating A-lamins are mostly obscure. Here, we identified E3 ubiquitin ligase Smurf2 as a physiological regulator of lamin A and its disease-associated mutant form progerin (LADelta50), whose expression underlies the development of Hutchinson-Gilford progeria syndrome (HGPS), a devastating premature aging syndrome. We show that Smurf2 directly binds, ubiquitinates, and negatively regulates the expression of lamin A and progerin in Smurf2 dose- and E3 ligase-dependent manners. Overexpression of catalytically active Smurf2 promotes the autophagic-lysosomal breakdown of lamin A and progerin, whereas Smurf2 depletion increases lamin A levels. Remarkably, acute overexpression of Smurf2 in progeria fibroblasts was able to significantly reduce the nuclear deformability. Furthermore, we demonstrate that the reciprocal relationship between Smurf2 and A-lamins is preserved in different types of mouse and human normal and cancer tissues. These findings establish Smurf2 as an essential regulator of lamin A and progerin and lay a foundation for evaluating the efficiency of progerin clearance by Smurf2 in HGPS, and targeting of the Smurf2-lamin A axis in age-related diseases such as cancer. |