|  Help  |  About  |  Contact Us

Publication : Phosphodiesterase 2 Protects Against Catecholamine-Induced Arrhythmia and Preserves Contractile Function After Myocardial Infarction.

First Author  Vettel C Year  2017
Journal  Circ Res Volume  120
Issue  1 Pages  120-132
PubMed ID  27799254 Mgi Jnum  J:262029
Mgi Id  MGI:6156754 Doi  10.1161/CIRCRESAHA.116.310069
Citation  Vettel C, et al. (2017) Phosphodiesterase 2 Protects Against Catecholamine-Induced Arrhythmia and Preserves Contractile Function After Myocardial Infarction. Circ Res 120(1):120-132
abstractText  RATIONALE: Phosphodiesterase 2 is a dual substrate esterase, which has the unique property to be stimulated by cGMP, but primarily hydrolyzes cAMP. Myocardial phosphodiesterase 2 is upregulated in human heart failure, but its role in the heart is unknown. OBJECTIVE: To explore the role of phosphodiesterase 2 in cardiac function, propensity to arrhythmia, and myocardial infarction. METHODS AND RESULTS: Pharmacological inhibition of phosphodiesterase 2 (BAY 60-7550, BAY) led to a significant positive chronotropic effect on top of maximal beta-adrenoceptor activation in healthy mice. Under pathological conditions induced by chronic catecholamine infusions, BAY reversed both the attenuated beta-adrenoceptor-mediated inotropy and chronotropy. Conversely, ECG telemetry in heart-specific phosphodiesterase 2-transgenic (TG) mice showed a marked reduction in resting and in maximal heart rate, whereas cardiac output was completely preserved because of greater cardiac contraction. This well-tolerated phenotype persisted in elderly TG with no indications of cardiac pathology or premature death. During arrhythmia provocation induced by catecholamine injections, TG animals were resistant to triggered ventricular arrhythmias. Accordingly, Ca(2+)-spark analysis in isolated TG cardiomyocytes revealed remarkably reduced Ca(2+) leakage and lower basal phosphorylation levels of Ca(2+)-cycling proteins including ryanodine receptor type 2. Moreover, TG demonstrated improved cardiac function after myocardial infarction. CONCLUSIONS: Endogenous phosphodiesterase 2 contributes to heart rate regulation. Greater phosphodiesterase 2 abundance protects against arrhythmias and improves contraction force after severe ischemic insult. Activating myocardial phosphodiesterase 2 may, thus, represent a novel intracellular antiadrenergic therapeutic strategy protecting the heart from arrhythmia and contractile dysfunction.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression