|  Help  |  About  |  Contact Us

Publication : Preclinical evaluation of NUDT15-guided thiopurine therapy and its effects on toxicity and antileukemic efficacy.

First Author  Nishii R Year  2018
Journal  Blood Volume  131
Issue  22 Pages  2466-2474
PubMed ID  29572377 Mgi Jnum  J:348804
Mgi Id  MGI:6193466 Doi  10.1182/blood-2017-11-815506
Citation  Nishii R, et al. (2018) Preclinical evaluation of NUDT15-guided thiopurine therapy and its effects on toxicity and antileukemic efficacy. Blood 131(22):2466-2474
abstractText  Thiopurines (eg, 6-mercaptopurine [MP]) are highly efficacious antileukemic agents, but they are also associated with dose-limiting toxicities. Recent studies by us and others have identified inherited NUDT15 deficiency as a novel genetic cause of thiopurine toxicity, and there is a strong rationale for NUDT15-guided dose individualization to preemptively mitigate adverse effects of these drugs. Using CRISPR-Cas9 genome editing, we established a Nudt15(-/-) mouse model to evaluate the effectiveness of this strategy in vivo. Across MP dosages, Nudt15(-/-) mice experienced severe leukopenia, rapid weight loss, earlier death resulting from toxicity, and more bone marrow hypocellularity compared with wild-type mice. Nudt15(-/-) mice also showed excessive accumulation of a thiopurine active metabolite (ie, DNA-incorporated thioguanine nucleotides [DNA-TG]) in an MP dose-dependent fashion, as a plausible cause of increased toxicity. MP dose reduction effectively normalized systemic exposure to DNA-TG in Nudt15(-/-) mice and largely eliminated Nudt15 deficiency-mediated toxicity. In 95 children with acute lymphoblastic leukemia, MP dose adjustment also directly led to alteration in DNA-TG levels, the effects of which were proportional to the degree of NUDT15 deficiency. Using leukemia-bearing mice with concordant Nudt15 genotype in leukemia and host, we also confirmed that therapeutic efficacy was preserved in Nudt15(-/-) mice receiving a reduced MP dose compared with Nudt15(+/+) counterparts exposed to a standard dose. In conclusion, we demonstrated that NUDT15 genotype-guided MP dose individualization can preemptively mitigate toxicity without compromising therapeutic efficacy.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression