|  Help  |  About  |  Contact Us

Publication : Somatic genome editing with CRISPR/Cas9 generates and corrects a metabolic disease.

First Author  Jarrett KE Year  2017
Journal  Sci Rep Volume  7
Pages  44624 PubMed ID  28300165
Mgi Jnum  J:267631 Mgi Id  MGI:6268888
Doi  10.1038/srep44624 Citation  Jarrett KE, et al. (2017) Somatic genome editing with CRISPR/Cas9 generates and corrects a metabolic disease. Sci Rep 7:44624
abstractText  Germline manipulation using CRISPR/Cas9 genome editing has dramatically accelerated the generation of new mouse models. Nonetheless, many metabolic disease models still depend upon laborious germline targeting, and are further complicated by the need to avoid developmental phenotypes. We sought to address these experimental limitations by generating somatic mutations in the adult liver using CRISPR/Cas9, as a new strategy to model metabolic disorders. As proof-of-principle, we targeted the low-density lipoprotein receptor (Ldlr), which when deleted, leads to severe hypercholesterolemia and atherosclerosis. Here we show that hepatic disruption of Ldlr with AAV-CRISPR results in severe hypercholesterolemia and atherosclerosis. We further demonstrate that co-disruption of Apob, whose germline loss is embryonically lethal, completely prevented disease through compensatory inhibition of hepatic LDL production. This new concept of metabolic disease modeling by somatic genome editing could be applied to many other systemic as well as liver-restricted disorders which are difficult to study by germline manipulation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression