|  Help  |  About  |  Contact Us

Publication : Mst1 knockout enhances cardiomyocyte autophagic flux to alleviate angiotensin II-induced cardiac injury independent of angiotensin II receptors.

First Author  Cheng Z Year  2018
Journal  J Mol Cell Cardiol Volume  125
Pages  117-128 PubMed ID  30193956
Mgi Jnum  J:270084 Mgi Id  MGI:6274619
Doi  10.1016/j.yjmcc.2018.08.028 Citation  Cheng Z, et al. (2018) Mst1 knockout enhances cardiomyocyte autophagic flux to alleviate angiotensin II-induced cardiac injury independent of angiotensin II receptors. J Mol Cell Cardiol 125:117-128
abstractText  AIMS: Angiotension II (Ang II) plays a central role in the pathogenesis of renin-angiotensin-aldosterone system (RAAS)-induced heart failure. Mst1 exerts its function in cardiomyocytes subjected to pathological stimuli via inhibiting autophagy and aggravating apoptosis, but its role in RAAS-mediated cardiac injury is still unknown. Here, we aimed to determine whether cardiomyocyte-specific Mst1 knockout can alleviate Ang II-induced cardiac injury by improving cardiomyocyte autophagy and whether these functions depend on Ang II receptors. RESULTS: Mst1 knockout alleviated Ang II-induced heart failure, without affecting blood pressure and compensatory concentric hypertrophy. Mst1 specific knockout improved the effects of Ang II on cardiomyocyte autophagy, as evidenced by further increased LC3-II expression and decreased P62 expression. More typical autophagosomes accompanied by less damaged mitochondria were also observed by electron microscopy in Ang II-treated Mst1(Delta/Delta) mice. In vitro, Mst1 knockdown promoted cardiomyocyte autophagic flux, as demonstrated by more GFP-mRFP-LC3 puncta per cell. Increased LC3-II and decreased P62 expression both in the presence and absence of chloroquine were observed in Mst1 knockdown cardiomyocytes administered with Ang II. Treatment with 3-MA, an inhibitor of autophagy, abolished the beneficial effects of Mst1 knockout against Ang II-induced cardiac dysfunction. The compensatory effects of Ang II on upregulated autophagy were associated with Mst1 inhibition. Interestingly, the knockdown or antagonization of AT1R inhibited cardiomyocyte autophagy, which may represent a threat to cardiac function. Importantly, Mst1 knockout consistently enhanced cardiomyocyte autophagy following the knockdown or blocking of AT1R and AT2R. CONCLUSION: Cardiomyocyte-specific Mst1 knockout alleviates Ang II-induced cardiac injury by enhancing cardiomyocyte autophagy. Mst1 inhibition may counteract the undesirable effects of Ang II receptors blockage on cardiomyocyte autophagy and represent a promising complementary treatment strategy against Ang II-induced cardiac injury.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression