|  Help  |  About  |  Contact Us

Publication : PD-1<sup>+</sup> regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer.

First Author  Kamada T Year  2019
Journal  Proc Natl Acad Sci U S A Volume  116
Issue  20 Pages  9999-10008
PubMed ID  31028147 Mgi Jnum  J:276281
Mgi Id  MGI:6305244 Doi  10.1073/pnas.1822001116
Citation  Kamada T, et al. (2019) PD-1(+) regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc Natl Acad Sci U S A 116(20):9999-10008
abstractText  PD-1 blockade is a cancer immunotherapy effective in various types of cancer. In a fraction of treated patients, however, it causes rapid cancer progression called hyperprogressive disease (HPD). With our observation of HPD in approximately 10% of anti-PD-1 monoclonal antibody (mAb)-treated advanced gastric cancer (GC) patients, we explored how anti-PD-1 mAb caused HPD in these patients and how HPD could be treated and prevented. In the majority of GC patients, tumor-infiltrating FoxP3(high)CD45RA(-)CD4(+) T cells [effector Treg (eTreg) cells], which were abundant and highly suppressive in tumors, expressed PD-1 at equivalent levels as tumor-infiltrating CD4(+) or CD8(+) effector/memory T cells and at much higher levels than circulating eTreg cells. Comparison of GC tissue samples before and after anti-PD-1 mAb therapy revealed that the treatment markedly increased tumor-infiltrating proliferative (Ki67(+)) eTreg cells in HPD patients, contrasting with their reduction in non-HPD patients. Functionally, circulating and tumor-infiltrating PD-1(+) eTreg cells were highly activated, showing higher expression of CTLA-4 than PD-1(-) eTreg cells. PD-1 blockade significantly enhanced in vitro Treg cell suppressive activity. Similarly, in mice, genetic ablation or antibody-mediated blockade of PD-1 in Treg cells increased their proliferation and suppression of antitumor immune responses. Taken together, PD-1 blockade may facilitate the proliferation of highly suppressive PD-1(+) eTreg cells in HPDs, resulting in inhibition of antitumor immunity. The presence of actively proliferating PD-1(+) eTreg cells in tumors is therefore a reliable marker for HPD. Depletion of eTreg cells in tumor tissues would be effective in treating and preventing HPD in PD-1 blockade cancer immunotherapy.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

0 Expression