|  Help  |  About  |  Contact Us

Publication : Whole-exome sequencing identified ARL2 as a novel candidate gene for MRCS (microcornea, rod-cone dystrophy, cataract, and posterior staphyloma) syndrome.

First Author  Cai XB Year  2019
Journal  Clin Genet Volume  96
Issue  1 Pages  61-71
PubMed ID  30945270 Mgi Jnum  J:281417
Mgi Id  MGI:6367853 Doi  10.1111/cge.13541
Citation  Cai XB, et al. (2019) Whole-exome sequencing identified ARL2 as a novel candidate gene for MRCS (microcornea, rod-cone dystrophy, cataract, and posterior staphyloma) syndrome. Clin Genet 96(1):61-71
abstractText  Adenosine diphosphate (ADP)-ribosylation factor-like 2 (ARL2) protein participates in a broad range of cellular processes and acts as a mediator for mutant ARL2BP in cilium-associated retinitis pigmentosa and for mutant HRG4 in mitochondria-related photoreceptor degeneration. However, mutant ARL2 has not been linked to any human disease so far. Here, we identified a de novo variant in ARL2 (c.44G > T, p.R15L) in a Chinese pedigree with MRCS (microcornea, rod-cone dystrophy, cataract, and posterior staphyloma) syndrome through whole-exome sequencing and co-segregation analysis. Co-immunoprecipitation assay and immunoblotting confirmed that the mutant ARL2 protein showed a 62% lower binding affinity for HRG4 while a merely 18% lower binding affinity for ARL2BP. Immunofluorescence images of ARL2 and HRG4 co-localizing with cytochrome c in HeLa cells described their relationship with mitochondria. Further analyses of the mitochondrial respiratory chain and adenosine triphosphate production showed significant abnormalities under an ARL2-mutant condition. Finally, we generated transgenic mice to test the pathogenicity of this variant and observed retinal degeneration complicated with microcornea and cataract that were similar to those in our patients. In conclusion, we uncover ARL2 as a novel candidate gene for MRCS syndrome and suggest a mitochondria-related mechanism of the first ARL2 variant through site-directed mutagenesis studies.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

0 Expression