|  Help  |  About  |  Contact Us

Publication : NBCe1-A is required for the renal ammonia and K<sup>+</sup> response to hypokalemia.

First Author  Lee HW Year  2020
Journal  Am J Physiol Renal Physiol Volume  318
Issue  2 Pages  F402-F421
PubMed ID  31841393 Mgi Jnum  J:290580
Mgi Id  MGI:6444023 Doi  10.1152/ajprenal.00481.2019
Citation  Lee HW, et al. (2020) NBCe1-A is required for the renal ammonia and K(+) response to hypokalemia. Am J Physiol Renal Physiol 318(2):F402-F421
abstractText  Hypokalemia increases ammonia excretion and decreases K(+) excretion. The present study examined the role of the proximal tubule protein NBCe1-A in these responses. We studied mice with Na(+)-bicarbonate cotransporter electrogenic, isoform 1, splice variant A (NBCe1-A) deletion [knockout (KO) mice] and their wild-type (WT) littermates were provided either K(+) control or K(+)-free diet. We also used tissue sections to determine the effect of extracellular ammonia on NaCl cotransporter (NCC) phosphorylation. The K(+)-free diet significantly increased proximal tubule NBCe1-A and ammonia excretion in WT mice, and NBCe1-A deletion blunted the ammonia excretion response. NBCe1-A deletion inhibited the ammoniagenic/ammonia recycling enzyme response in the cortical proximal tubule (PT), where NBCe1-A is present in WT mice. In the outer medulla, where NBCe1-A is not present, the PT ammonia metabolism response was accentuated by NBCe1-A deletion. KO mice developed more severe hypokalemia and had greater urinary K(+) excretion during the K(+)-free diet than did WT mice. This was associated with blunting of the hypokalemia-induced change in NCC phosphorylation. NBCe1-A KO mice have systemic metabolic acidosis, but experimentally induced metabolic acidosis did not alter NCC phosphorylation. Although KO mice have impaired ammonia metabolism, experiments in tissue sections showed that lack of ammonia does impair NCC phosphorylation. Finally, urinary aldosterone was greater in KO mice than in WT mice, but neither expression of epithelial Na(+) channel alpha-, beta-, and gamma-subunits nor of H(+)-K(+)-ATPase alpha1- or alpha2-subunits correlated with changes in urinary K(+). We conclude that NBCe1-A is critical for the effect of diet-induced hypokalemia to increase cortical proximal tubule ammonia generation and for the expected decrease in urinary K(+) excretion.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

0 Expression