|  Help  |  About  |  Contact Us

Publication : Transgenic Kallikrein 14 Mice Display Major Hair Shaft Defects Associated with Desmoglein 3 and 4 Degradation, Abnormal Epidermal Differentiation, and IL-36 Signature.

First Author  Gouin O Year  2020
Journal  J Invest Dermatol Volume  140
Issue  6 Pages  1184-1194
PubMed ID  32169475 Mgi Jnum  J:297220
Mgi Id  MGI:6441605 Doi  10.1016/j.jid.2019.10.026
Citation  Gouin O, et al. (2020) Transgenic Kallikrein 14 Mice Display Major Hair Shaft Defects Associated with Desmoglein 3 and 4 Degradation, Abnormal Epidermal Differentiation, and IL-36 Signature. J Invest Dermatol 140(6):1184-1194
abstractText  Netherton syndrome is a rare autosomal recessive skin disease caused by loss-of-function mutations in SPINK5 encoding LEKTI protein that results in unopposed activity of epidermal kallikrein-related peptidases (KLKs), mainly KLK5, KLK7, and KLK14. Although the function of KLK5 and KLK7 has been previously studied, the role of KLK14 in skin homeostasis and its contribution to Netherton syndrome pathogenesis remains unknown. We generated a transgenic murine model overexpressing human KLK14 (TghKLK14) in stratum granulosum. TghKLK14 mice revealed increased proteolytic activity in the granular layers and in hair follicles. Their hair did not grow and displayed major defects with hyperplastic hair follicles when hKLK14 was overexpressed. TghKLK14 mice displayed abnormal epidermal hyperproliferation and differentiation. Ultrastructural analysis revealed cell separation in the hair cortex and increased thickness of Huxley's layer. Desmoglein (Dsg) 2 staining was increased, whereas Dsg3 and Dsg4 were markedly reduced. In vitro studies showed that hKLK14 directly cleaves recombinant human DSG3 and recombinant human DSG4, suggesting that their degradation contributes to hair abnormalities. Their skin showed an inflammatory signature, with enhanced expression of IL-36 family members and their downstream targets involved in innate immunity. This in vivo study identifies KLK14 as an important contributor to hair abnormalities and skin inflammation seen in Netherton syndrome.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression