First Author | Ogawa M | Year | 2020 |
Journal | Biochem Biophys Res Commun | Volume | 526 |
Issue | 1 | Pages | 184-190 |
PubMed ID | 32201074 | Mgi Jnum | J:298477 |
Mgi Id | MGI:6480161 | Doi | 10.1016/j.bbrc.2020.03.066 |
Citation | Ogawa M, et al. (2020) Contribution of extracellular O-GlcNAc to the stability of folded epidermal growth factor-like domains and Notch1 trafficking. Biochem Biophys Res Commun 526(1):184-190 |
abstractText | The Notch signaling pathway is highly conserved and essential in animal development and tissue homeostasis. Regulation of Notch signaling is a crucial process for human health. Ligands initiate a signal cascade by binding to Notch receptors expressed on the neighboring cell. Notch receptors interact with ligands through their epidermal growth factor-like repeats (EGF repeats). Most EGF repeats are modified by O-glycosylation with residues, such as O-linked N-acetylglucosamine (O-GlcNAc), O-fucose, and O-glucose. A recent study revealed the distinct roles of these O-glycans in ligand binding, processing, and trafficking of Notch receptors. In particular, O-GlcNAc glycans are essential for Delta-like (DLL) ligand-mediated Notch signaling. In this study, we showed that O-GlcNAc promotes Notch1 trafficking to the cell surfaces under the condition that O-fucose and O-glucose are removed from consecutive EGF repeats of Notch1. Through in vitro experiments, we showed that O-GlcNAc mediates the stability of EGF domains in the same manner as O-fucose and O-glucose. Thus, O-GlcNAc on EGF domains possesses a shared function in the stability of EGF domains and Notch1 trafficking. |