|  Help  |  About  |  Contact Us

Publication : Deafness mutation D572N of TMC1 destabilizes TMC1 expression by disrupting LHFPL5 binding.

First Author  Yu X Year  2020
Journal  Proc Natl Acad Sci U S A Volume  117
Issue  47 Pages  29894-29903
PubMed ID  33168709 Mgi Jnum  J:300046
Mgi Id  MGI:6477536 Doi  10.1073/pnas.2011147117
Citation  Yu X, et al. (2020) Deafness mutation D572N of TMC1 destabilizes TMC1 expression by disrupting LHFPL5 binding. Proc Natl Acad Sci U S A 117(47):29894-29903
abstractText  Transmembrane channel-like protein 1 (TMC1) and lipoma HMGIC fusion partner-like 5 (LHFPL5) are recognized as two critical components of the mechanotransduction complex in inner-ear hair cells. However, the physical and functional interactions of TMC1 and LHFPL5 remain largely unexplored. We examined the interaction between TMC1 and LHFPL5 by using multiple approaches, including our recently developed ultrasensitive microbead-based single-molecule pulldown (SiMPull) assay. We demonstrate that LHFPL5 physically interacts with and stabilizes TMC1 in both heterologous expression systems and in the soma and hair bundle of hair cells. Moreover, the semidominant deafness mutation D572N in human TMC1 (D569N in mouse TMC1) severely disrupted LHFPL5 binding and destabilized TMC1 expression. Thus, our findings reveal previously unrecognized physical and functional interactions of TMC1 and LHFPL5 and provide insights into the molecular mechanism by which the D572N mutation causes deafness. Notably, these findings identify a missing link in the currently known physical organization of the mechanotransduction macromolecular complex. Furthermore, this study has demonstrated the power of the microbead-based SiMPull assay for biochemical investigation of rare cells such as hair cells.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression