|  Help  |  About  |  Contact Us

Publication : Upregulated microRNA-31 inhibits oxidative stress-induced neuronal injury through the JAK/STAT3 pathway by binding to PKD1 in mice with ischemic stroke.

First Author  Li J Year  2020
Journal  J Cell Physiol Volume  235
Issue  3 Pages  2414-2428
PubMed ID  31517390 Mgi Jnum  J:299863
Mgi Id  MGI:6490751 Doi  10.1002/jcp.29146
Citation  Li J, et al. (2020) Upregulated microRNA-31 inhibits oxidative stress-induced neuronal injury through the JAK/STAT3 pathway by binding to PKD1 in mice with ischemic stroke. J Cell Physiol 235(3):2414-2428
abstractText  Ischemic stroke (IS), which is characterized by high morbidity, disability, and mortality, is recognized as a major cerebrovascular disease. MicroRNA-31 (miR-31) was reported to participate in the progression of brain disease. The present study was conducted in order to investigate the effect of miR-31 on oxidative stress-induced neuronal injury in IS mice with the involvement of protein kinase D1 (PKD1) and the JAK/STAT3 pathway. C57BL/6J mice were used to establish the middle cerebral artery occlusion (MCAO) model. Astrocytes were transfected with miR-31 mimic, miR-31 inhibitor, si-PKD1, or JAK-STAT3 pathway inhibitor. Following the establishment of an oxygen-glucose deprivation (OGD) model, the astrocytes were cocultured with neuronal OGD. Lower miR-31, higher PKD1 expressions, and activated JAK/STAT3 pathway were found in both the MCAO and OGD models. miR-31 could negatively target PKD1. In an MCAO model, overexpressing miR-31 and silencing PKD1 reduced neuronal injury, cerebral infarct volume, neuron loss, and oxidative stress injury, inhibited the activation of JAK/STAT3 pathway and the expressions of PKD1, interleukin (IL)-1beta, IL-6, tumor necrosis factor-alpha, malondialdehyde, 4-HNE, 8-HOdG, caspase-3, and Bax, but increased the superoxide dismutase content. In the OGD model, overexpression of miR-31 and silencing of PKD1 attenuated oxidative stress-induced neuronal injury, and diminished the lactate dehydrogenase leakage and reactive oxygen species level, accompanied by elevated neuronal viability. These results indicate that miR-31 alleviates inflammatory response as well as an oxidative stress-induced neuronal injury in IS mice by downregulating PKD1 and JAK/STAT3 pathway.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Authors

0 Bio Entities

0 Expression