|  Help  |  About  |  Contact Us

Publication : The Commensal Microbiota Enhances ADP-Triggered Integrin α<sub>IIb</sub>β<sub>3</sub> Activation and von Willebrand Factor-Mediated Platelet Deposition to Type I Collagen.

First Author  Kiouptsi K Year  2020
Journal  Int J Mol Sci Volume  21
Issue  19 PubMed ID  32998468
Mgi Jnum  J:304737 Mgi Id  MGI:6514550
Doi  10.3390/ijms21197171 Citation  Kiouptsi K, et al. (2020) The Commensal Microbiota Enhances ADP-Triggered Integrin alphaIIbbeta3 Activation and von Willebrand Factor-Mediated Platelet Deposition to Type I Collagen. Int J Mol Sci 21(19):7171
abstractText  The commensal microbiota is a recognized enhancer of arterial thrombus growth. While several studies have demonstrated the prothrombotic role of the gut microbiota, the molecular mechanisms promoting arterial thrombus growth are still under debate. Here, we demonstrate that germ-free (GF) mice, which from birth lack colonization with a gut microbiota, show diminished static deposition of washed platelets to type I collagen compared with their conventionally raised (CONV-R) counterparts. Flow cytometry experiments revealed that platelets from GF mice show diminished activation of the integrin alphaIIbbeta3 (glycoprotein IIbIIIa) when activated by the platelet agonist adenosine diphosphate (ADP). Furthermore, washed platelets from Toll-like receptor-2 (Tlr2)-deficient mice likewise showed impaired static deposition to the subendothelial matrix component type I collagen compared with wild-type (WT) controls, a process that was unaffected by GPIbalpha-blockade but influenced by von Willebrand factor (VWF) plasma levels. Collectively, our results indicate that microbiota-triggered steady-state activation of innate immune pathways via TLR2 enhances platelet deposition to subendothelial matrix molecules. Our results link host colonization status with the ADP-triggered activation of integrin alphaIIbbeta3, a pathway promoting platelet deposition to the growing thrombus.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression