First Author | Lemaitre P | Year | 2021 |
Journal | J Immunol | Volume | 206 |
Issue | 5 | Pages | 1077-1087 |
PubMed ID | 33483347 | Mgi Jnum | J:303888 |
Mgi Id | MGI:6515398 | Doi | 10.4049/jimmunol.2000521 |
Citation | Lemaitre P, et al. (2021) Loss of the Transfer RNA Wobble Uridine-Modifying Enzyme Elp3 Delays T Cell Cycle Entry and Impairs T Follicular Helper Cell Responses through Deregulation of Atf4. J Immunol 206(5):1077-1087 |
abstractText | The activation of T cells is accompanied by intensive posttranscriptional remodeling of their proteome. We observed that protein expression of enzymes that modify wobble uridine in specific tRNAs, namely elongator subunit 3 (Elp3) and cytosolic thiouridylase (Ctu)2, increased in the course of T cell activation. To investigate the role of these tRNA epitranscriptomic modifiers in T cell biology, we generated mice deficient for Elp3 in T cells. We show that deletion of Elp3 has discrete effects on T cells. In vitro, Elp3-deficient naive CD4(+) T cells polarize normally but are delayed in entering the first cell cycle following activation. In vivo, different models of immunization revealed that Elp3-deficient T cells display reduced expansion, resulting in functional impairment of T follicular helper (TFH) responses, but not of other CD4(+) effector T cell responses. Transcriptomic analyses identified a progressive overactivation of the stress-responsive transcription factor Atf4 in Elp3-deficient T cells. Overexpression of Atf4 in wild-type T cells phenocopies the effect of Elp3 loss on T cell cycle entry and TFH cell responses. Reciprocally, partial silencing of Atf4 or deletion of its downstream effector transcription factor Chop rescues TFH responses of Elp3-deficient T cells. Together, our results reveal that specific epitranscriptomic tRNA modifications contribute to T cell cycle entry and promote optimal TFH responses. |