|  Help  |  About  |  Contact Us

Publication : Plasminogen activator inhibitor type-1 is a negative regulator of hematopoietic regeneration in the adipocyte-rich bone marrow microenvironment.

First Author  Harada K Year  2021
Journal  Biochem Biophys Res Commun Volume  557
Pages  180-186 PubMed ID  33866038
Mgi Jnum  J:305569 Mgi Id  MGI:6706026
Doi  10.1016/j.bbrc.2021.04.017 Citation  Harada K, et al. (2021) Plasminogen activator inhibitor type-1 is a negative regulator of hematopoietic regeneration in the adipocyte-rich bone marrow microenvironment. Biochem Biophys Res Commun 557:180-186
abstractText  Bone marrow adipocytes (BMAs) have recently been recognized as a niche component with a suppressive function. Obese individuals with abundant BMAs exhibit impaired hematopoietic regeneration after hematopoietic stem cell transplantation (HSCT). We hypothesized that plasminogen activator inhibitor type-1 (PAI-1), an adipokine that regulates the fibrinolytic system, contributes to impaired hematopoiesis in bone marrow (BM) microenvironment with abundant BMAs. We demonstrated that BMAs differentiated in vitro could secrete PAI-1 and were positive for PAI-1 in vivo. In addition, the abundance of BMAs was associated with high levels of PAI-1 expression. The BMA-rich microenvironment exhibited impaired hematopoietic regeneration after HSCT when compared with a BMA-less microenvironment. The impaired hematopoietic regeneration in BMA-rich microenvironment was significantly alleviated by PAI-1 knockout or PAI-1 inhibitor treatment. Obese mice with abundant BMAs, compared with normal-weight mice, exhibited higher bone marrow PAI-1 concentrations, increased fibrinolytic system suppression, and lower stem cell factor (SCF) concentrations after HSCT. PAI-1 inhibitor administration significantly activated the fibrinolytic system in obese mice, contributing to the higher SCF concentration. Moreover, PAI-1 inhibitor treatment significantly alleviated the impaired hematopoietic regeneration in obese mice both after 5-fluorouracil injection and HSCT. These results indicate that PAI-1 hinders hematopoietic regeneration in BMA-rich microenvironments. The blockade of PAI-1 activity could be a novel therapeutic means of facilitating hematopoietic reconstitution in BMA-rich patients.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

0 Expression