First Author | Harada K | Year | 2021 |
Journal | Biochem Biophys Res Commun | Volume | 557 |
Pages | 180-186 | PubMed ID | 33866038 |
Mgi Jnum | J:305569 | Mgi Id | MGI:6706026 |
Doi | 10.1016/j.bbrc.2021.04.017 | Citation | Harada K, et al. (2021) Plasminogen activator inhibitor type-1 is a negative regulator of hematopoietic regeneration in the adipocyte-rich bone marrow microenvironment. Biochem Biophys Res Commun 557:180-186 |
abstractText | Bone marrow adipocytes (BMAs) have recently been recognized as a niche component with a suppressive function. Obese individuals with abundant BMAs exhibit impaired hematopoietic regeneration after hematopoietic stem cell transplantation (HSCT). We hypothesized that plasminogen activator inhibitor type-1 (PAI-1), an adipokine that regulates the fibrinolytic system, contributes to impaired hematopoiesis in bone marrow (BM) microenvironment with abundant BMAs. We demonstrated that BMAs differentiated in vitro could secrete PAI-1 and were positive for PAI-1 in vivo. In addition, the abundance of BMAs was associated with high levels of PAI-1 expression. The BMA-rich microenvironment exhibited impaired hematopoietic regeneration after HSCT when compared with a BMA-less microenvironment. The impaired hematopoietic regeneration in BMA-rich microenvironment was significantly alleviated by PAI-1 knockout or PAI-1 inhibitor treatment. Obese mice with abundant BMAs, compared with normal-weight mice, exhibited higher bone marrow PAI-1 concentrations, increased fibrinolytic system suppression, and lower stem cell factor (SCF) concentrations after HSCT. PAI-1 inhibitor administration significantly activated the fibrinolytic system in obese mice, contributing to the higher SCF concentration. Moreover, PAI-1 inhibitor treatment significantly alleviated the impaired hematopoietic regeneration in obese mice both after 5-fluorouracil injection and HSCT. These results indicate that PAI-1 hinders hematopoietic regeneration in BMA-rich microenvironments. The blockade of PAI-1 activity could be a novel therapeutic means of facilitating hematopoietic reconstitution in BMA-rich patients. |