First Author | Qin Z | Year | 2022 |
Journal | J Mol Cell Cardiol | Volume | 166 |
Pages | 50-62 | PubMed ID | 35081368 |
Mgi Jnum | J:321547 | Mgi Id | MGI:6885397 |
Doi | 10.1016/j.yjmcc.2022.01.006 | Citation | Qin Z, et al. (2022) The nuclear receptor co-repressor 1 is a novel cardioprotective factor against acute myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 166:50-62 |
abstractText | Acute myocardial ischemia/reperfusion (MI/R) is a major determinant of prognosis in myocardial infarction patients, while effective therapies are currently lacking. Nuclear receptor co-repressor 1 (NCoR1) is emerging as a critical regulator of cell survival and death signaling in mammals. However, the role of NCoR1 in the pathogenesis of acute MI/R injury remains unknown. Here, we observed that NCoR1 was highly expressed in the mouse heart and significantly downregulated after acute MI/R injury. Cardiomyocyte-specific NCoR1 deletion led to significantly increased infarct size and exacerbated cardiac dysfunction compared to wild-type littermates. Moreover, cardiomyocyte-specific NCoR1 deficiency exacerbated MI/R-induced mitochondrial dysfunction and apoptotic pathway activation. Transcriptomic profiling results indicated that cardiomyocyte-specific NCoR1 deficiency pivotally promoted activation of inflammatory pathways. Through integrated omics analysis, signal transducer and activator of transcription 1 (STAT1) was identified as a downstream target trans-repressed by NCoR1. STAT1 activation played a key mediating role in the detrimental effects of NCoR1 deficiency in MI/R injury. Collectively, our findings provided the first evidence that cardiomyocyte-expressed NCoR1 functioned as a crucial cardioprotective factor against acute MI/R injury by targeting the STAT1 pathway in heart. |